3.355 \(\int \frac{a+a \sec (c+d x)}{\sqrt{\cos (c+d x)}} \, dx\)

Optimal. Leaf size=57 \[ \frac{2 a \text{EllipticF}\left (\frac{1}{2} (c+d x),2\right )}{d}-\frac{2 a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a \sin (c+d x)}{d \sqrt{\cos (c+d x)}} \]

[Out]

(-2*a*EllipticE[(c + d*x)/2, 2])/d + (2*a*EllipticF[(c + d*x)/2, 2])/d + (2*a*Sin[c + d*x])/(d*Sqrt[Cos[c + d*
x]])

________________________________________________________________________________________

Rubi [A]  time = 0.0673231, antiderivative size = 57, normalized size of antiderivative = 1., number of steps used = 5, number of rules used = 5, integrand size = 21, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.238, Rules used = {4225, 2748, 2636, 2639, 2641} \[ \frac{2 a F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}-\frac{2 a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a \sin (c+d x)}{d \sqrt{\cos (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Int[(a + a*Sec[c + d*x])/Sqrt[Cos[c + d*x]],x]

[Out]

(-2*a*EllipticE[(c + d*x)/2, 2])/d + (2*a*EllipticF[(c + d*x)/2, 2])/d + (2*a*Sin[c + d*x])/(d*Sqrt[Cos[c + d*
x]])

Rule 4225

Int[(csc[(a_.) + (b_.)*(x_)]*(B_.) + (A_))*(u_), x_Symbol] :> Int[(ActivateTrig[u]*(B + A*Sin[a + b*x]))/Sin[a
 + b*x], x] /; FreeQ[{a, b, A, B}, x] && KnownSineIntegrandQ[u, x]

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2636

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(Cos[c + d*x]*(b*Sin[c + d*x])^(n + 1))/(b*d*(n +
1)), x] + Dist[(n + 2)/(b^2*(n + 1)), Int[(b*Sin[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1
] && IntegerQ[2*n]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rubi steps

\begin{align*} \int \frac{a+a \sec (c+d x)}{\sqrt{\cos (c+d x)}} \, dx &=\int \frac{a+a \cos (c+d x)}{\cos ^{\frac{3}{2}}(c+d x)} \, dx\\ &=a \int \frac{1}{\cos ^{\frac{3}{2}}(c+d x)} \, dx+a \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx\\ &=\frac{2 a F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a \sin (c+d x)}{d \sqrt{\cos (c+d x)}}-a \int \sqrt{\cos (c+d x)} \, dx\\ &=-\frac{2 a E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{d}+\frac{2 a \sin (c+d x)}{d \sqrt{\cos (c+d x)}}\\ \end{align*}

Mathematica [C]  time = 4.77699, size = 209, normalized size = 3.67 \[ \frac{a (\cos (c+d x)+1) \sec ^2\left (\frac{1}{2} (c+d x)\right ) \left (2 \cos (c) \sqrt{\sec ^2(c)} \sqrt{\sin ^2\left (\tan ^{-1}(\tan (c))+d x\right )} \csc \left (\tan ^{-1}(\tan (c))+d x\right ) \text{HypergeometricPFQ}\left (\left \{-\frac{1}{2},-\frac{1}{4}\right \},\left \{\frac{3}{4}\right \},\cos ^2\left (\tan ^{-1}(\tan (c))+d x\right )\right )-4 \sin (c) \sqrt{\csc ^2(c)} \cos (c+d x) \sqrt{\cos ^2\left (d x-\tan ^{-1}(\cot (c))\right )} \sec \left (d x-\tan ^{-1}(\cot (c))\right ) \text{HypergeometricPFQ}\left (\left \{\frac{1}{4},\frac{1}{2}\right \},\left \{\frac{5}{4}\right \},\sin ^2\left (d x-\tan ^{-1}(\cot (c))\right )\right )+4 \csc (c) \cos (d x)-\frac{\csc (c) \sec (c) \left (3 \cos \left (c-\tan ^{-1}(\tan (c))-d x\right )+\cos \left (c+\tan ^{-1}(\tan (c))+d x\right )\right )}{\sqrt{\sec ^2(c)}}\right )}{4 d \sqrt{\cos (c+d x)}} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[(a + a*Sec[c + d*x])/Sqrt[Cos[c + d*x]],x]

[Out]

(a*(1 + Cos[c + d*x])*Sec[(c + d*x)/2]^2*(4*Cos[d*x]*Csc[c] - ((3*Cos[c - d*x - ArcTan[Tan[c]]] + Cos[c + d*x
+ ArcTan[Tan[c]]])*Csc[c]*Sec[c])/Sqrt[Sec[c]^2] - 4*Cos[c + d*x]*Sqrt[Cos[d*x - ArcTan[Cot[c]]]^2]*Sqrt[Csc[c
]^2]*HypergeometricPFQ[{1/4, 1/2}, {5/4}, Sin[d*x - ArcTan[Cot[c]]]^2]*Sec[d*x - ArcTan[Cot[c]]]*Sin[c] + 2*Co
s[c]*Csc[d*x + ArcTan[Tan[c]]]*HypergeometricPFQ[{-1/2, -1/4}, {3/4}, Cos[d*x + ArcTan[Tan[c]]]^2]*Sqrt[Sec[c]
^2]*Sqrt[Sin[d*x + ArcTan[Tan[c]]]^2]))/(4*d*Sqrt[Cos[c + d*x]])

________________________________________________________________________________________

Maple [A]  time = 1.641, size = 146, normalized size = 2.6 \begin{align*} -2\,{\frac{a \left ({\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}+{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}\sqrt{ \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}}-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}\cos \left ( 1/2\,dx+c/2 \right ) \right ) }{\sin \left ( 1/2\,dx+c/2 \right ) \sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}d}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+a*sec(d*x+c))/cos(d*x+c)^(1/2),x)

[Out]

-2*a*(EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)+Elli
pticE(cos(1/2*d*x+1/2*c),2^(1/2))*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(sin(1/2*d*x+1/2*c)^2)^(1/2)-2*sin(1/2*d*x+
1/2*c)^2*cos(1/2*d*x+1/2*c))/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a \sec \left (d x + c\right ) + a}{\sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="maxima")

[Out]

integrate((a*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{a \sec \left (d x + c\right ) + a}{\sqrt{\cos \left (d x + c\right )}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="fricas")

[Out]

integral((a*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} a \left (\int \frac{\sec{\left (c + d x \right )}}{\sqrt{\cos{\left (c + d x \right )}}}\, dx + \int \frac{1}{\sqrt{\cos{\left (c + d x \right )}}}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))/cos(d*x+c)**(1/2),x)

[Out]

a*(Integral(sec(c + d*x)/sqrt(cos(c + d*x)), x) + Integral(1/sqrt(cos(c + d*x)), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{a \sec \left (d x + c\right ) + a}{\sqrt{\cos \left (d x + c\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+a*sec(d*x+c))/cos(d*x+c)^(1/2),x, algorithm="giac")

[Out]

integrate((a*sec(d*x + c) + a)/sqrt(cos(d*x + c)), x)